
This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-120461
PREPRINT

Security Profile Inspector (SPI)
The Next Generation

This paper was prepared for submittal to the
17th DOE Computer Security Group Training Conference

Milwaukee, WI
May 2-5, 1995

March 1995

T. Bartoletti
J. Fisher

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

SPI - The Next Generation 1 T. Bartoletti & J. Fisher

Security Profile Inspector
(SPI)

The Next Generation

Tony Bartoletti* (azb@llnl.gov)
John Fisher (fisher23@llnl.gov)

Computer Security Technology Center
Lawrence Livermore National Laboratory

Abstract

The current Security Profile Inspector (SPI) conducts analysis
of UNIX and VMS based operating system configurations to
help system managers maintain secure operating environments.
A broad horizontal range of security tests with a vertical array
of usage options supports the needs of both novice and
experienced system administrators. Its modular structure was
designed to provide a foundation for distributed operation and
network-wide inspection conducted from a central command
host. The “Next Generation” SPI outlined here should serve to
promote cost-effective computer security for many years.

Introduction

The relentless explosion in Internet growth has made computer
and information security a crucial area of research. The
transition from government and academically oriented Internet
use to private and commercial use has lent a renewed sense of
urgency to the search for solutions. The battle to safeguard
information by eliminating computer system vulnerabilities

* Work performed under the auspices of the U. S. Department of Energy by the
 Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
* Reference to any specific commercial products, process or service by trade name,
 trademark, manufacturer or otherwise, does not constitute or imply its endorsement,
 recommendation or favoring by the U.S. Department of Energy or the University
 of California.

SPI - The Next Generation 2 T. Bartoletti & J. Fisher

and preventing intrusions continues unabated, and as new
operating systems and new applications are adopted, new
vulnerabilities arise to challenge the security technologist.

While most hackers still take advantage of fairly simple
vulnerabilities, such as poorly chosen passwords or incorrect
file permissions, an increasing number are employing
automated “hacking tools,” effectively allowing them to attack
countless systems with a keystroke. These tools demonstrate
an alarming degree of sophistication, exploit arcane and
narrow system flaws, subvert key system software, and cover
their tracks. It is of little consequence that the majority of
casual hackers may not understand how these tools work. It is
of great consequence that most system managers do not know
how to protect themselves against such methods.

Proactive analysis of system security configurations is your
first-line defense from intrusions. Following this front line
are other aspects of computer security, including network
monitoring and audit trail analysis. These are important once
the intruder has already entered the system, either by having
taken advantage of a vulnerability, or legitimately (disgruntled
employee, etc.). But they are not a substitute for strong,
proactive defense measures.

The approach of the Security Profile Inspector, or SPI, is
prevention -- prevent the network-based hacker from entering
the system in the first place, and prevent the “insider” (valid
user or partially successful hacker) from escalating an attack
to more sensitive parts of the system.

The SPI Project Objectives

The following points highlight the overall philosophy that has
guided the SPI development effort:

Provide a comprehensive environment for security assessment

SPI provides a powerful set of tools for assessing computer
protections. These tools analyze security configuration and
access controls, identify outdated system software, and
dynamically test for network service vulnerabilities. The
results are presented in user-friendly reports, as well as in a
machine readable format amenable to further data processing.

SPI - The Next Generation 3 T. Bartoletti & J. Fisher

Design for upgrade ability to address new vulnerabilities

Computer security is a moving target. New software releases
mean new vulnerabilities, new patches to be installed, and new
configuration elements to monitor. In concert, a dedicated and
well-connected community of Internet hackers continues to
find new flaws in existing systems. For this reason, SPI was
designed to be easily extensible, both by the developers and by
the end user.

Address as wide a variety of platforms as possible

Every SPI revision has stressed increasing portability,
providing consistent security management across a broad
range of network-capable systems, because in a networked
environment every system is a potentially weak link.

The Evolution of SPI

The November 1988 Morris or “Internet” Worm attack
demonstrated just how vulnerable and interdependent network-
based systems were. [1] Major Internet nodes were choked into
failure, and in the resulting panic many subnets and systems
shut themselves off from the greater Internet. Although this
attack exploited vulnerabilities in a particular subset of UNIX
systems, all Internet systems suffered days of service
disruption and weeks of uncertainty as costly “clean-up”
activities swallowed up otherwise productive time. Attacks
such as the Morris Worm taught that all computers were
vulnerable, particularly if they were part of the growing
Internet community. Efforts to address computer system
vulnerabilities were made on several fronts.

At Lawrence Livermore National Laboratory, a group was
formed to provide coordinated computer incident response, as
well as software tools, to help secure systems for the DOE.
This organization, now known as the Computer Security
Technology Center (CSTC) is comprised of the Computer
Incident Advisory Capability (CIAC) and a number of
research and development efforts in computer security.

The SPI effort was formed in response to the Internet Worm
incident, in particular to help identify the security weaknesses
in host systems and to aid in the detection and clean-up of

SPI - The Next Generation 4 T. Bartoletti & J. Fisher

future incidents. With direct funding from the DOE Office of
Security Affairs, a small initial set of system inspection tools
was developed and deployed as the SPI 1.x series. This
package included password testing, file content and attribute
change detection, and a rudimentary user interface.

During this period, Dan Farmer at Purdue University put
together a collection of many small UNIX “shell” scripts
addressing scores of varied UNIX flaws, gathering many of
these from system administrators across the Internet. The
result was the now-familiar COPS suite of freeware UNIX
security inspection tools. [2] The COPS suite was added to the
SPI 2.x series, along with major improvements to the SPI user
interface such as online, context sensitive help. (With SPI 3.x,
COPS functionality was replaced by scripts written in SPI’s
Configuration Query Language.)

The transition of SPI from the 2.x to 3.x series involved
considerable restructuring, both to help position SPI against
obsolescence, and to satisfy some of the criticisms expressed
by users. The isolation of the data extraction functionality into
a layer separate from the data analysis routines was due in
large part to suggestions by Russell Brand, a security
consultant associated with Lawrence Livermore National
Laboratory. This isolation allowed the majority of platform
porting work to focus upon a limited set of code libraries.

The SPI developers have also received guidance from users in
the field. A major contributor was Gene Rackow of Argonne
National Laboratory. Gene remarked that the SPI inspection
output reports could not be used for input to further secondary
analysis. He also argued that the security inspection elements
were not sufficiently decomposed into units that would allow
an ambitious system administrator to formulate specific
inquiries over the elements of a system’s security
configuration. With the SPI 3.x series, all of the major
security inspection modules produce intermediate “data-share”
machine-readable reports in what we call “common output
report format” (CORF). A Configuration Query Language
(CQL) and parser were written to provide a friendlier
programming interface to the data-extraction libraries,
providing support for flexible and conditional queries about

SPI - The Next Generation 5 T. Bartoletti & J. Fisher

security configuration. Much of the character of the SPI 3.x
series can be traced back to Gene’s comments.

SPI Today

The suite of security tools provided by SPI effectively meets
the problems faced by the user community, and the goals
originally outlined:

Configuration Query Language (CQL) This is a high
level, interpretive scripting language for extracting important
system information, and presenting that information in a
manner utilized by all other tools. CQL allows for complex
queries to be made about files, users, and groups.
Functionality that is not provided by the language may be
introduced through C programming language functions.

Quick System Profile (QSP) This is an extensive CQL
script, unique for each operating system, which looks for
known vulnerabilities and common security problems. This
tool is in a constant state of update, to address the latest known
vulnerabilities. The QSP script includes tests for problems
specific to a particular operating system.

Password Security Inspector (PSI) This tool is designed
to uncover poorly choosen passwords. It attempts to match the
user’s encrypted password with common variations of the
user’s personal information, and words from selected custom
dictionaries. An internal password inspection database is
employed to allow the user to test only those passwords
changed since the last time PSI was run, and allow the user to
implement a discretionary password-aging policy.

Change Detector Tool (CDT) When initialized, this tool
creates a database “snapshot” of important user, group, and
file information. Users may define various subsets of files and
accounts, and specify for each of these which attributes are
suitable for change detection reporting. On subsequent
executions, CDT reports changes in this information relative
to the snapshot, including when files, users, and groups have
been changed, added, or deleted. The system administrator
may then verify that the changes made were indeed intended.
CDT is used to check for unauthorized additions of user
accounts, to track group memberships, and to catch changes to

SPI - The Next Generation 6 T. Bartoletti & J. Fisher

file access permissions, ownerships, access and modification
times, etc. File content changes may be tracked as well
through the use of crypto-checksums.

Access Control Test (ACT) This is a rule-based, goal-
seeking system designed to assess sequential dependencies in
computer access control mechanisms. Loosely based upon Bob
Baldwin’s “Kuang” tool [3], this utility applies an external
rulebase particular to UNIX access controls.

Binary Authentication Tool (BAT) This tool ensures
that all executables and libraries that make up the operating
system are up-to-date (incorporate the latest patches) and
authentic (are not Trojan Horses). BAT examines host file
systems to identify known vulnerable system binaries and
suggests the best patch or replacement binary to correct the
problem. Authentication and patch information tables are
provided by the SPI development team. (In a related CSTC
effort, the Binary Authentication Signatures Integrity Standard
- BASIS - is working to have vendors provide and maintain
authentication tables as part of their software release process.)

Easy Of Use

All of the SPI tools may be managed through a full-screen
text-based user interface. Reasonable default values are
provided for each inspection tool, and they can be scheduled to
run at particular times. Every option and data field comes with
on-line help specific to the current screen or data field
selected, to aid novice users. For more experienced users, who
wish to bypass the user interface, the command line options
for all tools are fully documented through “man” pages.

All of the SPI security inspection tools produce a machine-
readable Common Output Report Format (CORF). The user
interface employs the SPI report generator (RG) to convert
this intermediate form, producing user friendly, informative
reports. Direct access to the report generator and the raw tool
output is provided to the advanced SPI user. The report
generator uses customizable configuration files, allowing the
end user to modify existing report formats, or create new
reports. By utilizing the common output format, results from
multiple hosts or multiple inspection tools may be combined

SPI - The Next Generation 7 T. Bartoletti & J. Fisher

and used as input to additional forms of analysis or to produce
more comprehensive global reports.

The Current SPI Product Structure

SPI User Interface

Background
Job Monitor

Parameter
Manager

Report
Viewer

Job
Launch

Report
Generator

Job
Status

Job
Scheduling

CQL
/QSP ACT BAT CDT PSI

Security Inspectors

System-Independent Object Data Extraction Layer

System-Dependent Data Extraction Layer

Architecture of Code

SPI utilizes multiple abstraction layers, to aid portability and
adaptability. At the lowest level is the operating system, which
provides its own set of primitives for accessing system
information. All operating system dependent code is isolated in
identifiable libraries, with a well-designed object oriented
interface for extracting needed information. This provides a
consistent system interface for all the inspection management
tools.

In this programming interface, user, group, and file objects
were constructed. Each object allows for consistent access to
system data, independent of the operating system. To port all
tools to a new operating system, one need simply to port the
object library. This design helped resolve portability issues.
The recent porting of SPI to VMS demonstrated that SPI could

SPI - The Next Generation 8 T. Bartoletti & J. Fisher

be ported quickly to a non-POSIX environment, largely by
rewriting the system-dependent data-extraction layer.

Providing a C programming language interface to system
information, however, is not sufficient to encourage end users
to expand SPI’s security analysis capability.

The Configuration Query Language allows for high-level
queries friendlier to users. It provides easy access to system
information without having to compile or understand a cryptic
programming language. CQL is quite powerful, enough so that
the Quick System Profile tool is actually a collection of CQL
scripts. Many of the other tools utilize CQL scripts internally.
Site-specific system queries can be written easily by the end
user.

One important advantage of CQL is its support for C
programming language extensions. If a particular check can
not be done through CQL alone, a C function can be written
and called from a CQL script.

Tool Design

The CORF format serves as the communication mechanism
between all SPI tools. It serves as a powerful and flexible
means of storing both data and results. The SPI tools utilize
CQL scripts (which generate CORF output) for extracting
system information. CORF also serves as the database format,
storing user, group, and file information. All of the SPI
inspection tools use CORF for reporting inspection results,
including warnings, advisories, headings and summary
information. Output from several tools may be combined
together, and used to create new reports. Tools may be written
which analyze output from several inspection tools, collected
from a network of host machines, to produce results
unobtainable from single host analysis.

Each tool is designed to be accessible by a wide range of users.
Most users will feel comfortable modifying each tool’s
behavior through the user interface. For those who wish to
have more direct access to each tool’s functionality, each tool
may be run from the command line. Standard UNIX ‘man’
pages are provided which explain command line parameters.

SPI - The Next Generation 9 T. Bartoletti & J. Fisher

In short, we believe the current single-host SPI security
assessment product has approached a zenith in fundamental
security inspection and inspection management functionality.
However, the effective use of security management personnel
demands that network-wide inspections be easily conducted
from a single command post, with sets of commands that
automatically aggregate security inspections and report
generation across large collections of host machines. This
distributed inspection capability brings forth unique security
management issues that the next generation SPI must address.

SPI - The Next Generation

The Management Aspects of Distributed Systems

In the shrinking domains of monolithic computing, where
users far outnumber systems, one could afford the small cadre
of highly skilled system administrators needed to securely
manage the computing base. In contrast, the transition to
distributed computing has resulted in a situation where the
number of computer systems is roughly commensurate with
the number of users. This has brought about a certain crisis in
the secure administration of networked systems.

The individual nodes in a distributed system are not “dumb
terminals” nor even single-user “personal computer” systems.
They are typically multi-user, multi-tasking workstations
capable of supporting scores of simultaneous user accounts,
sessions, and processes. As such, they carry with them the full
burden of system administration responsibilities. In the
absence of effective distributed system administration, every
scientist, engineer, finance or personnel manager with a
networked workstation on their desk must also accept the role
of system administrator, a role for which most are only
marginally skilled. Expecting end-users to be the primary
system administrators is both a misapplication of talent, and
moreover unrealistic. This expectation is a major factor
contributing to the pervasive security problems in networked
systems. We need an effective means to centralize the
administration of distributed systems.

In a fundamental sense, system administration is the most
sensitive of information processing activities. While the

SPI - The Next Generation 10 T. Bartoletti & J. Fisher

compromise of a single scientific or engineering file may
jeopardize a project, the compromise of a system
configuration file can jeopardize the entire computing base and
all of the data files it manages. This sensitivity poses unique
problems in a distributed environment.

In contrast to monolithic computing, distributed system
administration requires that sensitive system configuration data
pass across the network, beyond the direct control of the
computing space of any particular machine. On the network,
data is guided by lower level protocols providing insufficient
data security, evidence the number of network-based attacks
involving “packet-sniffing” [4,5] and foreign host machines
masquerading [6] as trusted ones.

The long-term solution involves the revamping of these
common network protocols to accommodate built-in security
assurance. Until that time, such assurances must be provided
in the application layer, and this is the course SPI developers
have taken in the design of distributed security inspection.

SPI Distributed Security Inspections

The next-generation SPI is being designed to satisfy the
following broad requirements:

1. Automated and command-driven inspection of 50 or
more remote host machines from a central command
host, with consideration for upward scalability.

2. Flexible inspection parameterization.

3. Flexible job scheduling and automated job control.

4. Flexible report aggregation capabilities.

5. Robust performance in a variable environment.

6. Host-to-host authentication, integrity assurance, and
privacy assurance for all command and data traffic.

The following pages detail our plans to satisfy these distributed
inspection requirements, and demonstrate how the existing
layered design contributes to an effective implementation.

SPI - The Next Generation 11 T. Bartoletti & J. Fisher

The SPI Distributed Security Inspection Architecture

Command
Center

InterfaceJobGroup
Submission

Reports
Manager

JobGroup Database Results Database

Background
Job Control

System

Results
Collection

Master
Com Agent

Master
Com Client

Master
Com Server

Remote
Com Client

Remote
Com Server

Remote Job
Monitor

Remote
Inspector

Remote Job
Monitor

Remote
Inspector

Remote Job
Monitor

Remote
Inspector

REQUESTS RESULTSNETWORK

Remote
Com Agent

The model we have adopted for distributed system inspections
calls for a SPI command host that acts as the single “security
client” collecting inspection results, with the remaining hosts
of the target domain acting as “security servers.” This means
that the remote target hosts need only support the data
extraction and analysis modules, while the user-interface and
its complement of administrative functions (job scheduling,
report management, online help, etc) will exist only on the SPI
command host. This will go a long way to ease the portability
obstacles SPI has often faced, and will even allow the
integrated inspection of UNIX, VMS and other host operating
systems.

SPI - The Next Generation 12 T. Bartoletti & J. Fisher

The data extraction libraries and a selection of inspection
modules will be installed on each of the remote hosts. For
each remote host, these inspection modules will run under the
direction of a security server daemon that is triggered by an
authenticated signal from the command host. The remote
inspections will run asynchronously, and as each inspection
completes, a remote job monitor will open a connection to the
SPI command host to deliver the inspection results.

The SPI Distributed Job Control System

The routine inspection of fifty or more computer systems
presents logistical problems not present when dealing with
systems individually. When the SPI Job Control System is
tasked to perform an “AllHosts level 3 password inspection” it
must launch and monitor perhaps fifty remote password
inspection processes. Yet it should appear as a single
operation with a single status to the security operator.
Suppose that, under normal situations, it would take about one
hour for each of the remote processes, occurring in parallel,
to complete. How should SPI respond if:

• for the first 15 minutes, two of the target hosts repeatedly
fail to respond to the job request?

• after the first 30 minutes, the SPI command host is shut
down for 3 hours (or 3 days) for maintenance?

• after 90 minutes, only 46 of the 50 hosts have completed?

In each case, the entire distributed inspection system must
behave in a reasonable manner. That is to say, it should
respond in the same manner that a responsible human operator
would if faced with similar circumstances. At any given point
in time, the Job Control System may be juggling hundreds of
operations; monitoring scores of remote inspection jobs,
preparing to launch jobs according to predefined schedules,
dealing with balky remote hosts or network connections,
conferring with the report collection service to confirm
successful completion of remote jobs, etc. In the midst of all
this activity a power outage may shut down all systems for a
time. When the power is restored, and the systems come back
up, the entire operation should be able to “pick up where it left
off” in as much as it would be reasonable to do so.

SPI - The Next Generation 13 T. Bartoletti & J. Fisher

In order to provide such rugged behavior, it is necessary that
each autonomous process maintain state by temporarily
logging fundamental transactions until such time that the
information is no longer critical to the overall state of the
system. A great deal of consideration has been given to ensure
that the distributed SPI system will provide robust consistency.

The SPI Distributed Inspection Functionality

We intend to provide the security operator the ability to:

• Define “HostGroups” designating particular subsets of host
systems.

• Define “JobGroups” specifying an instance of inspection
type and level for a selected HostGroup.

• Submit a JobGroup to the Job Control System, with
provision for specifying a range of scheduling parameters.
Examples include:

-- Schedule a job to run ONCE NOW.

-- Schedule a job to run ONCE at a given DATE and TIME.

-- Schedule a job to run PERIODICALLY, beginning at an
initial DATE and TIME, and repeating every N (minutes,
hours, days.)

-- For any scheduled JobGroup, allow specification of a
TIMEOUT value such that jobs that either fail to launch or
complete within TIMEOUT of the scheduled start time are
reported and skipped.

• Query the status of scheduled JobGroups to review jobs
pending, jobs active, remote hosts responding or not
responding, etc.

• Specify report parameters for varied reports to be
generated over the results returned by completed
JobGroups.

This last point implies the ability to generate organization-
wide security conformance statistics, providing support for
real measures in areas ranging from the effectiveness of

SPI - The Next Generation 14 T. Bartoletti & J. Fisher

security awareness activities to the penetration of malicious
code during an active network attack.

Finally, by aggregating the intermediate machine-readable
results from selected network-wide surveys, we will be able to
provide support for future “inter-host vulnerability” analysis
tools. As an example, consider that any UNIX user may place
a “.rhost” entry in their home directory, allowing them to log
in from any other named host-account. The wanton creation
of such entries by users produces additional complexity in the
analysis of resource access controls.

To make this example more tangible, say that user U1 at host
M1 creates a “.rhost” entry specifying “U2 at M2”. Several
security questions should be asked that cannot be answered
purely by inspection of host M1; Is M2 a host in our security
domain? Is U2 a valid user account on M2? Are the accounts
U1@M1 and U2@M2 owned by the same real user?

Short of disallowing “.rhost” entries altogether, or disabling
the rlogind daemon, it would be beneficial to be able to
produce “maps” of these and other inter-host relationships, to
ensure that they do not violate a given access control policy.

Securing the Security Inspections

While distributed security inspection and security management
can provide a single point of control in securing a domain of
hosts, it can also represent a focal point for the subversion of
the same security domain. Consider the implications of a
remote host attack from outside the security domain
masquerading as the inspection command center, and the entire
consort of target hosts dutifully offering up their security
vulnerabilities. Methods must be employed to ensure that the
SPI command center and the hosts of the security domain have
a trusted channel through which to transmit inspection
commands and data.

The next-generation SPI product will employ the NIST Digital
Signature Standard (DSS) to provide both host-to-host
authentication and data integrity. [7,8] The command host will
be fitted with a module to produce the necessary DSS
certificates. For security reasons, the distribution of DSS
certificates must be conducted through an out-of-band channel.

SPI - The Next Generation 15 T. Bartoletti & J. Fisher

Fortunately, certificate distribution can be relatively
infrequent. Several methods will be employed to protect the
certificates themselves from straighforward disclosure.
Where data sensitivity is especially critical, these certificates
can also be employed to generate Diffie-Hellman “shared keys”
to exchange discardable session keys that may in turn be used
to DES-encrypt subsequent data traffic.

Summary

The past 5 years have seen SPI evolve from an “emergency
collection” of three rudimentary inspection aids into a mature
suite of coherently structured and integrated security
inspection and management tools. The distributed SPI
architecure under development will represent a new chapter in
the SPI evolution. The ability to leverage the expertise of
dedicated, security-saavy system administrators through
application of the SPI distributed inspection system should
serve to promote a comprehensive and consistent security
posture across a wide and varied collection of networked
systems.

Bibliography

[1] Simon Garfinkel & Eugene Spafford, Practical UNIX Security,
O’Reilly & Associates, Inc. June 1991.

[2] Dan Farmer & Eugene Spafford, The COPS Security Checker System
Department of Computer Sciences, Purdue University CSD-TR-993,
1990.

[3] Robert W. Baldwin, “Rule Based Analysis of Computer Security”, MIT
June 1987.

[4] U. S. Department of Energy - Computer Incident Advisory Capability,
“Network Monitoring Attacks” CIAC Advisory Notice E-09, February
3, 1994.

[5] U. S. Department of Energy - Computer Incident Advisory Capability,
“Network Monitoring Attacks Update” CIAC Advisory Notice E-12,
March 18, 1994.

SPI - The Next Generation 16 T. Bartoletti & J. Fisher

[6] U. S. Department of Energy - Computer Incident Advisory Capability,
“Internet Address Spoofing and Hijacked Session Attacks” CIAC
Advisory Notice F-08, January 23, 1995.

[7] U. S. Department of Commerce/NIST Federal Information Processing
Standard, Secure Hash Standard (FIPS PUB 180-1, draft) May 31, 1994

[8] U. S. Department of Commerce/NIST Federal Information Processing
Standard, Digital Signature Standard (FIPS PUB XX, draft) February
1, 1993

T
echnical Inform

ation D
epartm

ent • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia 94551

